by Josh Dillon, last updated March 29, 2023
This notebook runs calibration smoothing to the gains coming out of file_calibration notebook. It removes any flags founds on by that notebook and replaces them with flags generated from full_day_rfi and full_day_antenna_flagging. It also plots the results for a couple of antennas.
Here's a set of links to skip to particular figures and tables:
smooth_cal
¶smooth_cal
¶import time
tstart = time.time()
import os
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import h5py
import hdf5plugin # REQUIRED to have the compression plugins available
import numpy as np
import glob
import copy
import warnings
import matplotlib
import matplotlib.pyplot as plt
from hera_cal import io, utils, smooth_cal
from hera_qm.time_series_metrics import true_stretches
%matplotlib inline
from IPython.display import display, HTML
# get files
SUM_FILE = os.environ.get("SUM_FILE", None)
# SUM_FILE = '/users/jsdillon/lustre/H6C/abscal/2459853/zen.2459853.25518.sum.uvh5'
SUM_SUFFIX = os.environ.get("SUM_SUFFIX", 'sum.uvh5')
CAL_SUFFIX = os.environ.get("CAL_SUFFIX", 'sum.omni.calfits')
SMOOTH_CAL_SUFFIX = os.environ.get("SMOOTH_CAL_SUFFIX", 'sum.smooth.calfits')
ANT_FLAG_SUFFIX = os.environ.get("ANT_FLAG_SUFFIX", 'sum.antenna_flags.h5')
RFI_FLAG_SUFFIX = os.environ.get("RFI_FLAG_SUFFIX", 'sum.flag_waterfall.h5')
FREQ_SMOOTHING_SCALE = float(os.environ.get("FREQ_SMOOTHING_SCALE", 10.0)) # MHz
TIME_SMOOTHING_SCALE = float(os.environ.get("TIME_SMOOTHING_SCALE", 6e5)) # seconds
EIGENVAL_CUTOFF = float(os.environ.get("EIGENVAL_CUTOFF", 1e-12))
OUT_YAML_SUFFIX = os.environ.get("OUT_YAML_SUFFIX", '_aposteriori_flags.yaml')
OUT_YAML_DIR = os.environ.get("OUT_YAML_DIR", None)
if OUT_YAML_DIR is None:
OUT_YAML_DIR = os.path.dirname(SUM_FILE)
out_yaml_file = os.path.join(OUT_YAML_DIR, SUM_FILE.split('.')[-4] + OUT_YAML_SUFFIX)
for setting in ['SUM_FILE', 'SUM_SUFFIX', 'CAL_SUFFIX', 'SMOOTH_CAL_SUFFIX', 'ANT_FLAG_SUFFIX', 'RFI_FLAG_SUFFIX',
'FREQ_SMOOTHING_SCALE', 'TIME_SMOOTHING_SCALE', 'EIGENVAL_CUTOFF', 'out_yaml_file']:
print(f'{setting} = {eval(setting)}')
SUM_FILE = /lustre/aoc/projects/hera/h6c-analysis/IDR2/2459874/zen.2459874.25249.sum.uvh5 SUM_SUFFIX = sum.uvh5 CAL_SUFFIX = sum.omni.calfits SMOOTH_CAL_SUFFIX = sum.smooth.calfits ANT_FLAG_SUFFIX = sum.antenna_flags.h5 RFI_FLAG_SUFFIX = sum.flag_waterfall.h5 FREQ_SMOOTHING_SCALE = 10.0 TIME_SMOOTHING_SCALE = 600000.0 EIGENVAL_CUTOFF = 1e-12 out_yaml_file = /lustre/aoc/projects/hera/h6c-analysis/IDR2/2459874/2459874_aposteriori_flags.yaml
sum_glob = '.'.join(SUM_FILE.split('.')[:-3]) + '.*.' + SUM_SUFFIX
cal_files_glob = sum_glob.replace(SUM_SUFFIX, CAL_SUFFIX)
cal_files = sorted(glob.glob(cal_files_glob))
print(f'Found {len(cal_files)} *.{CAL_SUFFIX} files starting with {cal_files[0]}.')
Found 1862 *.sum.omni.calfits files starting with /lustre/aoc/projects/hera/h6c-analysis/IDR2/2459874/zen.2459874.25249.sum.omni.calfits.
rfi_flag_files_glob = sum_glob.replace(SUM_SUFFIX, RFI_FLAG_SUFFIX)
rfi_flag_files = sorted(glob.glob(rfi_flag_files_glob))
print(f'Found {len(rfi_flag_files)} *.{RFI_FLAG_SUFFIX} files starting with {rfi_flag_files[0]}.')
Found 1862 *.sum.flag_waterfall.h5 files starting with /lustre/aoc/projects/hera/h6c-analysis/IDR2/2459874/zen.2459874.25249.sum.flag_waterfall.h5.
ant_flag_files_glob = sum_glob.replace(SUM_SUFFIX, ANT_FLAG_SUFFIX)
ant_flag_files = sorted(glob.glob(ant_flag_files_glob))
print(f'Found {len(ant_flag_files)} *.{ANT_FLAG_SUFFIX} files starting with {ant_flag_files[0]}.')
Found 1862 *.sum.antenna_flags.h5 files starting with /lustre/aoc/projects/hera/h6c-analysis/IDR2/2459874/zen.2459874.25249.sum.antenna_flags.h5.
cs = smooth_cal.CalibrationSmoother(cal_files, flag_file_list=(ant_flag_files + rfi_flag_files), ignore_calflags=True,
pick_refant=True, propagate_refant_flags=True, load_chisq=True, load_cspa=True)
for pol in cs.refant:
print(f'Reference antenna {cs.refant[pol][0]} selected for {pol}.')
Mean of empty slice
Reference antenna 122 selected for Jee. Reference antenna 70 selected for Jnn.
# duplicate a small number of abscal gains for plotting
antnums = set([ant[0] for ant in cs.ants])
flags_per_antnum = [np.sum(cs.flag_grids[ant, 'Jnn']) + np.sum(cs.flag_grids[ant, 'Jee']) for ant in antnums]
refant_nums = [ant[0] for ant in cs.refant.values()]
candidate_ants = [ant for ant, nflags in zip(antnums, flags_per_antnum) if (ant not in refant_nums) and (nflags <= np.percentile(flags_per_antnum, 25))
and not np.all(cs.flag_grids[ant, 'Jee']) and not np.all(cs.flag_grids[ant, 'Jnn'])]
ants_to_plot = [func(candidate_ants) for func in (np.min, np.max)]
abscal_gains = {(ant, pol): np.array(cs.gain_grids[(ant, pol)]) for ant in ants_to_plot for pol in ['Jee', 'Jnn']}
cs.time_freq_2D_filter(freq_scale=FREQ_SMOOTHING_SCALE, time_scale=TIME_SMOOTHING_SCALE, eigenval_cutoff=EIGENVAL_CUTOFF,
method='DPSS', fit_method='lu_solve', fix_phase_flips=True, flag_phase_flip_ints=True)
No GPU/TPU found, falling back to CPU. (Set TF_CPP_MIN_LOG_LEVEL=0 and rerun for more info.)
lst_grid = utils.JD2LST(cs.time_grid) * 12 / np.pi
lst_grid[lst_grid > lst_grid[-1]] -= 24
def amplitude_plot(ant_to_plot):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# Pick vmax to not saturate 90% of the abscal gains
vmax = np.max([np.percentile(np.abs(cs.gain_grids[ant_to_plot, pol][~cs.flag_grids[ant_to_plot, pol]]), 99) for pol in ['Jee', 'Jnn']])
display(HTML(f'<h2>Antenna {ant_to_plot} Amplitude Waterfalls</h2>'))
# Plot abscal gain amplitude waterfalls for a single antenna
fig, axes = plt.subplots(4, 2, figsize=(14,14), gridspec_kw={'height_ratios': [1, 1, .4, .4]})
for ax, pol in zip(axes[0], ['Jee', 'Jnn']):
ant = (ant_to_plot, pol)
extent=[cs.freqs[0]/1e6, cs.freqs[-1]/1e6, lst_grid[-1], lst_grid[0]]
im = ax.imshow(np.where(cs.flag_grids[ant], np.nan, np.abs(cs.gain_grids[ant])), aspect='auto', cmap='inferno',
interpolation='nearest', vmin=0, vmax=vmax, extent=extent)
ax.set_title(f'Smoothcal Gain Amplitude of Antenna {ant[0]}: {pol[-1]}-polarized' )
ax.set_xlabel('Frequency (MHz)')
ax.set_ylabel('LST (Hours)')
ax.set_xlim([cs.freqs[0]/1e6, cs.freqs[-1]/1e6])
ax.set_yticklabels(ax.get_yticks() % 24)
plt.colorbar(im, ax=ax, orientation='horizontal', pad=.15)
# Now flagged plot abscal waterfall
for ax, pol in zip(axes[1], ['Jee', 'Jnn']):
ant = (ant_to_plot, pol)
extent=[cs.freqs[0]/1e6, cs.freqs[-1]/1e6, lst_grid[-1], lst_grid[0]]
im = ax.imshow(np.where(cs.flag_grids[ant], np.nan, np.abs(abscal_gains[ant])), aspect='auto', cmap='inferno',
interpolation='nearest', vmin=0, vmax=vmax, extent=extent)
ax.set_title(f'Abscal Gain Amplitude of Antenna {ant[0]}: {pol[-1]}-polarized' )
ax.set_xlabel('Frequency (MHz)')
ax.set_ylabel('LST (Hours)')
ax.set_xlim([cs.freqs[0]/1e6, cs.freqs[-1]/1e6])
ax.set_yticklabels(ax.get_yticks() % 24)
plt.colorbar(im, ax=ax, orientation='horizontal', pad=.15)
# Now plot mean gain spectra
for ax, pol in zip(axes[2], ['Jee', 'Jnn']):
ant = (ant_to_plot, pol)
nflags_spectrum = np.sum(cs.flag_grids[ant], axis=0)
to_plot = nflags_spectrum <= np.percentile(nflags_spectrum, 75)
ax.plot(cs.freqs[to_plot] / 1e6, np.nanmean(np.where(cs.flag_grids[ant], np.nan, np.abs(abscal_gains[ant])), axis=0)[to_plot], 'r.', label='Abscal')
ax.plot(cs.freqs[to_plot] / 1e6, np.nanmean(np.where(cs.flag_grids[ant], np.nan, np.abs(cs.gain_grids[ant])), axis=0)[to_plot], 'k.', ms=2, label='Smoothed')
ax.set_ylim([0, vmax])
ax.set_xlim([cs.freqs[0]/1e6, cs.freqs[-1]/1e6])
ax.set_xlabel('Frequency (MHz)')
ax.set_ylabel('|g| (unitless)')
ax.set_title(f'Mean Infrequently-Flagged Gain Amplitude of Antenna {ant[0]}: {pol[-1]}-polarized')
ax.legend(loc='upper left')
# Now plot mean gain time series
for ax, pol in zip(axes[3], ['Jee', 'Jnn']):
ant = (ant_to_plot, pol)
nflags_series = np.sum(cs.flag_grids[ant], axis=1)
to_plot = nflags_series <= np.percentile(nflags_series, 75)
ax.plot(lst_grid[to_plot], np.nanmean(np.where(cs.flag_grids[ant], np.nan, np.abs(abscal_gains[ant])), axis=1)[to_plot], 'r.', label='Abscal')
ax.plot(lst_grid[to_plot], np.nanmean(np.where(cs.flag_grids[ant], np.nan, np.abs(cs.gain_grids[ant])), axis=1)[to_plot], 'k.', ms=2, label='Smoothed')
ax.set_ylim([0, vmax])
ax.set_xlabel('LST (hours)')
ax.set_ylabel('|g| (unitless)')
ax.set_title(f'Mean Infrequently-Flagged Gain Amplitude of Antenna {ant[0]}: {pol[-1]}-polarized')
ax.set_xticklabels(ax.get_xticks() % 24)
ax.legend(loc='upper left')
plt.tight_layout()
plt.show()
def phase_plot(ant_to_plot):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
display(HTML(f'<h2>Antenna {ant_to_plot} Phase Waterfalls</h2>'))
fig, axes = plt.subplots(4, 2, figsize=(14,14), gridspec_kw={'height_ratios': [1, 1, .4, .4]})
# Plot phase waterfalls for a single antenna
for ax, pol in zip(axes[0], ['Jee', 'Jnn']):
ant = (ant_to_plot, pol)
extent=[cs.freqs[0]/1e6, cs.freqs[-1]/1e6, lst_grid[-1], lst_grid[0]]
im = ax.imshow(np.where(cs.flag_grids[ant], np.nan, np.angle(cs.gain_grids[ant])), aspect='auto', cmap='inferno',
interpolation='nearest', vmin=-np.pi, vmax=np.pi, extent=extent)
ax.set_title(f'Smoothcal Gain Phase of Ant {ant[0]} / Ant {cs.refant[pol][0]}: {pol[-1]}-polarized')
ax.set_xlabel('Frequency (MHz)')
ax.set_ylabel('LST (Hours)')
ax.set_xlim([cs.freqs[0]/1e6, cs.freqs[-1]/1e6])
ax.set_yticklabels(ax.get_yticks() % 24)
plt.colorbar(im, ax=ax, orientation='horizontal', pad=.15)
# Now plot abscal phase waterfall
for ax, pol in zip(axes[1], ['Jee', 'Jnn']):
ant = (ant_to_plot, pol)
extent=[cs.freqs[0]/1e6, cs.freqs[-1]/1e6, lst_grid[-1], lst_grid[0]]
im = ax.imshow(np.where(cs.flag_grids[ant], np.nan, np.angle(abscal_gains[ant])), aspect='auto', cmap='inferno',
interpolation='nearest', vmin=-np.pi, vmax=np.pi, extent=extent)
ax.set_title(f'Abscal Gain Phase of Ant {ant[0]} / Ant {cs.refant[pol][0]}: {pol[-1]}-polarized')
ax.set_xlabel('Frequency (MHz)')
ax.set_ylabel('LST (Hours)')
ax.set_xlim([cs.freqs[0]/1e6, cs.freqs[-1]/1e6])
ax.set_yticklabels(ax.get_yticks() % 24)
plt.colorbar(im, ax=ax, orientation='horizontal', pad=.15)
# Now plot median gain spectra
for ax, pol in zip(axes[2], ['Jee', 'Jnn']):
ant = (ant_to_plot, pol)
nflags_spectrum = np.sum(cs.flag_grids[ant], axis=0)
to_plot = nflags_spectrum <= np.percentile(nflags_spectrum, 75)
ax.plot(cs.freqs[to_plot] / 1e6, np.nanmedian(np.where(cs.flag_grids[ant], np.nan, np.angle(abscal_gains[ant])), axis=0)[to_plot], 'r.', label='Abscal')
ax.plot(cs.freqs[to_plot] / 1e6, np.nanmedian(np.where(cs.flag_grids[ant], np.nan, np.angle(cs.gain_grids[ant])), axis=0)[to_plot], 'k.', ms=2, label='Smoothed')
ax.set_ylim([-np.pi, np.pi])
ax.set_xlim([cs.freqs[0]/1e6, cs.freqs[-1]/1e6])
ax.set_xlabel('Frequency (MHz)')
ax.set_ylabel(f'Phase of g$_{{{ant[0]}}}$ / g$_{{{cs.refant[pol][0]}}}$')
ax.set_title(f'Median Infrequently-Flagged Gain Phase of Ant {ant[0]} / Ant {cs.refant[pol][0]}: {pol[-1]}-polarized')
ax.legend(loc='upper left')
# # Now plot median gain time series
for ax, pol in zip(axes[3], ['Jee', 'Jnn']):
ant = (ant_to_plot, pol)
nflags_series = np.sum(cs.flag_grids[ant], axis=1)
to_plot = nflags_series <= np.percentile(nflags_series, 75)
ax.plot(lst_grid[to_plot], np.nanmean(np.where(cs.flag_grids[ant], np.nan, np.angle(abscal_gains[ant])), axis=1)[to_plot], 'r.', label='Abscal')
ax.plot(lst_grid[to_plot], np.nanmean(np.where(cs.flag_grids[ant], np.nan, np.angle(cs.gain_grids[ant])), axis=1)[to_plot], 'k.', ms=2, label='Smoothed')
ax.set_ylim([-np.pi, np.pi])
ax.set_xlabel('LST (hours)')
ax.set_ylabel(f'Phase of g$_{{{ant[0]}}}$ / g$_{{{cs.refant[pol][0]}}}$')
ax.set_title(f'Mean Infrequently-Flagged Gain Phase of Ant {ant[0]} / Ant {cs.refant[pol][0]}: {pol[-1]}-polarized')
ax.set_xticklabels(ax.get_xticks() % 24)
ax.legend(loc='upper left')
plt.tight_layout()
plt.show()
smooth_cal
¶Here we plot abscal
and smooth_cal
gain amplitudes for both of the sample antennas. We also show means across time/frequency, excluding frequencies/times that are frequently flagged.
for ant_to_plot in ants_to_plot:
amplitude_plot(ant_to_plot)
smooth_cal
¶Here we plot abscal
and smooth_cal
phases relative to each polarization's reference antenna for both of the sample antennas. We also show medians across time/frequency, excluding frequencies/times that are frequently flagged.
for ant_to_plot in ants_to_plot:
phase_plot(ant_to_plot)
def chisq_plot():
fig, axes = plt.subplots(1, 2, figsize=(14, 10), sharex=True, sharey=True)
extent = [cs.freqs[0]/1e6, cs.freqs[-1]/1e6, lst_grid[-1], lst_grid[0]]
for ax, pol in zip(axes, ['Jee', 'Jnn']):
im = ax.imshow(np.where(cs.flag_grids[cs.refant[pol]], np.nan, cs.chisq_grids[pol]), vmin=1, vmax=5,
aspect='auto', cmap='turbo', interpolation='none', extent=extent)
ax.set_yticklabels(ax.get_yticks() % 24)
ax.set_title(f'{pol[1:]}-Polarized $\\chi^2$ / DoF')
ax.set_xlabel('Frequency (MHz)')
axes[0].set_ylabel('LST (hours)')
plt.tight_layout()
fig.colorbar(im, ax=axes, pad=.07, label='$\\chi^2$ / DoF', orientation='horizontal', extend='both', aspect=50)
Here we plot $\chi^2$ per degree of freedom from redundant-baseline calibration for both polarizations separately. While this plot is a little out of place, as it was not produced by this notebook, it is a convenient place where all the necessary components are readily available. If the array were perfectly redundant and any non-redundancies in the calibrated visibilities were explicable by thermal noise alone, this waterfall should be all 1.
chisq_plot()
FixedFormatter should only be used together with FixedLocator
avg_cspa_vs_time = {ant: np.nanmean(np.where(cs.flag_grids[ant], np.nan, cs.cspa_grids[ant]), axis=1) for ant in cs.ants}
avg_cspa_vs_freq = {ant: np.nanmean(np.where(cs.flag_grids[ant], np.nan, cs.cspa_grids[ant]), axis=0) for ant in cs.ants}
Mean of empty slice Mean of empty slice
def cspa_vs_time_plot():
fig, axes = plt.subplots(2, 1, figsize=(14, 8), sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['Jee', 'Jnn']):
detail_cutoff = np.percentile([np.nanmean(m) for ant, m in avg_cspa_vs_time.items()
if ant[1] == pol and np.isfinite(np.nanmean(m))], 95)
for ant in avg_cspa_vs_time:
if ant[1] == pol and not np.all(cs.flag_grids[ant]):
if np.nanmean(avg_cspa_vs_time[ant]) > detail_cutoff:
ax.plot(lst_grid, avg_cspa_vs_time[ant], label=ant, zorder=100)
else:
ax.plot(lst_grid, avg_cspa_vs_time[ant], c='grey', alpha=.2, lw=.5)
ax.legend(title=f'{pol[1:]}-Polarized', ncol=2)
ax.set_ylabel('Mean Unflagged $\\chi^2$ per Antenna')
ax.set_xlabel('LST (hours)')
ax.set_xticklabels(ax.get_xticks() % 24)
plt.ylim([1, 5.4])
plt.tight_layout()
def cspa_vs_freq_plot():
fig, axes = plt.subplots(2, 1, figsize=(14, 6), sharex=True, sharey=True, gridspec_kw={'hspace': 0})
for ax, pol in zip(axes, ['Jee', 'Jnn']):
detail_cutoff = np.percentile([np.nanmean(m) for ant, m in avg_cspa_vs_freq.items()
if ant[1] == pol and np.isfinite(np.nanmean(m))], 95)
for ant in avg_cspa_vs_freq:
if ant[1] == pol and not np.all(cs.flag_grids[ant]):
if np.nanmean(avg_cspa_vs_freq[ant]) > detail_cutoff:
ax.plot(cs.freqs / 1e6, avg_cspa_vs_freq[ant], label=ant, zorder=100)
else:
ax.plot(cs.freqs / 1e6, avg_cspa_vs_freq[ant], c='grey', alpha=.2, lw=.5)
ax.legend(title=f'{pol[1:]}-Polarized', ncol=2)
ax.set_ylabel('Mean Unflagged $\\chi^2$ per Antenna')
ax.set_xlabel('Frequency (MHz)')
plt.ylim([1, 5.4])
plt.tight_layout()
Here we plot $\chi^2$ per antenna from redundant-baseline calibration, separating polarizations and averaging the unflagged pixels in the waterfalls over frequency or time. The worst 5% of antennas are shown in color and highlighted in the legends, the rest are shown in grey.
cspa_vs_time_plot()
cspa_vs_freq_plot()
Mean of empty slice FixedFormatter should only be used together with FixedLocator
add_to_history = 'Produced by calibration_smoothing notebook with the following environment:\n' + '=' * 65 + '\n' + os.popen('conda env export').read() + '=' * 65
cs.write_smoothed_cal(output_replace=(CAL_SUFFIX, SMOOTH_CAL_SUFFIX), add_to_history=add_to_history, clobber=True)
Mean of empty slice
# write summary of entirely flagged times/freqs/ants to yaml
all_flagged_times = np.all([np.all(cs.flag_grids[ant], axis=1) for ant in cs.flag_grids], axis=0)
all_flagged_freqs = np.all([np.all(cs.flag_grids[ant], axis=0) for ant in cs.flag_grids], axis=0)
all_flagged_ants = sorted([ant for ant in cs.flag_grids if np.all(cs.flag_grids[ant])])
out_yml_str = 'JD_flags: ' + str([[cs.time_grid[flag_stretch][0] - cs.dt, cs.time_grid[flag_stretch][-1] + cs.dt]
for flag_stretch in true_stretches(all_flagged_times)])
chan_res = np.median(np.diff(cs.freqs))
out_yml_str += '\n\nfreq_flags: ' + str([[cs.freqs[flag_stretch][0] - chan_res / 2, cs.freqs[flag_stretch][-1] + chan_res / 2]
for flag_stretch in true_stretches(all_flagged_freqs)])
out_yml_str += '\n\nex_ants: ' + str(all_flagged_ants).replace("'", "").replace('(', '[').replace(')', ']')
print(f'Writing the following to {out_yaml_file}\n' + '-' * (25 + len(out_yaml_file)))
print(out_yml_str)
with open(out_yaml_file, 'w') as outfile:
outfile.writelines(out_yml_str)
Writing the following to /lustre/aoc/projects/hera/h6c-analysis/IDR2/2459874/2459874_aposteriori_flags.yaml ----------------------------------------------------------------------------------------------------------- JD_flags: [[2459874.252380821, 2459874.252604517], [2459874.2529400615, 2459874.253387454], [2459874.2538348464, 2459874.2540585427], [2459874.2540585427, 2459874.254282239], [2459874.254394087, 2459874.2547296314], [2459874.255177024, 2459874.255512568], [2459874.2556244163, 2459874.2558481125], [2459874.256407353, 2459874.2566310493], [2459874.2568547456, 2459874.257078442], [2459874.2576376824, 2459874.2578613786], [2459874.258308771, 2459874.2585324673], [2459874.259203556, 2459874.259427252], [2459874.2595391003, 2459874.2597627966], [2459874.260993126, 2459874.2614405183], [2459874.2614405183, 2459874.2617760627], [2459874.2626708476, 2459874.262894544], [2459874.263006392, 2459874.263230088], [2459874.264124873, 2459874.2643485693], [2459874.2644604174, 2459874.2646841137], [2459874.2656907467, 2459874.265914443], [2459874.2672566203, 2459874.2674803166], [2459874.2682632534, 2459874.268934342], [2459874.26904619, 2459874.2692698864], [2459874.2710594563, 2459874.271618697], [2459874.271618697, 2459874.271842393], [2459874.2724016337, 2459874.27262533], [2459874.2734082667, 2459874.273631963], [2459874.275533381, 2459874.275757077], [2459874.2758689253, 2459874.2760926215], [2459874.276428166, 2459874.276651862], [2459874.2782177357, 2459874.278441432], [2459874.2791125206, 2459874.279336217], [2459874.2797836093, 2459874.2801191537], [2459874.2820205716, 2459874.282244268], [2459874.282579812, 2459874.2828035085], [2459874.2829153566, 2459874.283139053], [2459874.284145686, 2459874.284369382], [2459874.2857115595, 2459874.2859352557], [2459874.2877248256, 2459874.287948522], [2459874.2904091803, 2459874.2906328766], [2459874.2934290795, 2459874.2936527757], [2459874.2945475606, 2459874.294771257], [2459874.2963371305, 2459874.2965608267], [2459874.302712473, 2459874.3032717137], [2459874.318147513, 2459874.3183712093], [2459874.3183712093, 2459874.3187067537], [2459874.3225095896, 2459874.322733286], [2459874.3232925264, 2459874.3236280708], [2459874.3250820963, 2459874.3254176406], [2459874.3466687826, 2459874.346892479], [2459874.347004327, 2459874.3473398713], [2459874.377986255, 2459874.3782099513], [2459874.426080945, 2459874.4266401855], [2459874.5344617693, 2459874.5346854655], [2459874.5346854655, 2459874.5349091617], [2459874.5349091617, 2459874.535132858], [2459874.541843745, 2459874.542067441], [2459874.5538114933, 2459874.5540351896], [2459874.5812142817, 2459874.581549826], [2459874.621926996, 2459874.622150692], [2459874.6255061356, 2459874.625729832], [2459874.630651149, 2459874.6313222377], [2459874.646086189, 2459874.646309885], [2459874.6611856846, 2459874.6690150527]] freq_flags: [[49911499.0234375, 50033569.3359375], [62240600.5859375, 62728881.8359375], [66635131.8359375, 66757202.1484375], [69931030.2734375, 70053100.5859375], [73715209.9609375, 74203491.2109375], [74447631.8359375, 74569702.1484375], [77499389.6484375, 78231811.5234375], [87509155.2734375, 108016967.7734375], [112167358.3984375, 112289428.7109375], [112655639.6484375, 112777709.9609375], [113265991.2109375, 113388061.5234375], [113632202.1484375, 113754272.4609375], [116439819.3359375, 116561889.6484375], [116683959.9609375, 116806030.2734375], [117050170.8984375, 117172241.2109375], [124496459.9609375, 125350952.1484375], [136215209.9609375, 136459350.5859375], [136947631.8359375, 137313842.7734375], [137435913.0859375, 137924194.3359375], [141464233.3984375, 141830444.3359375], [142074584.9609375, 142318725.5859375], [143783569.3359375, 144027709.9609375], [145492553.7109375, 145614624.0234375], [145858764.6484375, 145980834.9609375], [147323608.3984375, 147567749.0234375], [148422241.2109375, 148544311.5234375], [149154663.0859375, 149276733.3984375], [154159545.8984375, 154403686.5234375], [155258178.7109375, 155380249.0234375], [155868530.2734375, 156112670.8984375], [158187866.2109375, 158309936.5234375], [159164428.7109375, 159286499.0234375], [170883178.7109375, 171005249.0234375], [175155639.6484375, 175277709.9609375], [181137084.9609375, 181259155.2734375], [183090209.9609375, 183456420.8984375], [187362670.8984375, 187728881.8359375], [189193725.5859375, 189315795.8984375], [189559936.5234375, 190048217.7734375], [191146850.5859375, 191513061.5234375], [197128295.8984375, 197372436.5234375], [198104858.3984375, 198226928.7109375], [199203491.2109375, 199325561.5234375], [201766967.7734375, 201889038.0859375], [204940795.8984375, 205062866.2109375], [208480834.9609375, 208724975.5859375], [209945678.7109375, 210067749.0234375], [212142944.3359375, 212265014.6484375], [220565795.8984375, 220809936.5234375], [222885131.8359375, 223495483.3984375], [225692749.0234375, 225814819.3359375], [227401733.3984375, 227523803.7109375], [227645874.0234375, 227767944.3359375], [229110717.7734375, 229354858.3984375], [231063842.7734375, 231185913.0859375]] ex_ants: [[10, Jee], [18, Jee], [18, Jnn], [22, Jee], [22, Jnn], [27, Jee], [27, Jnn], [28, Jee], [28, Jnn], [29, Jnn], [32, Jee], [32, Jnn], [33, Jnn], [34, Jee], [43, Jee], [44, Jee], [46, Jnn], [47, Jee], [50, Jee], [50, Jnn], [51, Jee], [54, Jee], [54, Jnn], [55, Jnn], [57, Jee], [58, Jee], [58, Jnn], [59, Jee], [60, Jee], [60, Jnn], [63, Jee], [63, Jnn], [64, Jee], [64, Jnn], [68, Jnn], [73, Jee], [73, Jnn], [74, Jee], [74, Jnn], [75, Jnn], [77, Jee], [77, Jnn], [78, Jee], [78, Jnn], [84, Jnn], [87, Jee], [88, Jee], [88, Jnn], [89, Jee], [89, Jnn], [90, Jee], [90, Jnn], [91, Jee], [91, Jnn], [92, Jee], [92, Jnn], [98, Jnn], [99, Jee], [102, Jnn], [103, Jee], [103, Jnn], [104, Jnn], [105, Jee], [105, Jnn], [106, Jee], [106, Jnn], [107, Jee], [107, Jnn], [108, Jee], [108, Jnn], [109, Jee], [109, Jnn], [110, Jee], [110, Jnn], [111, Jee], [111, Jnn], [116, Jnn], [117, Jee], [117, Jnn], [120, Jnn], [124, Jee], [124, Jnn], [125, Jee], [125, Jnn], [126, Jee], [126, Jnn], [129, Jee], [129, Jnn], [130, Jee], [130, Jnn], [135, Jnn], [139, Jee], [140, Jee], [140, Jnn], [141, Jnn], [142, Jnn], [143, Jee], [143, Jnn], [146, Jee], [146, Jnn], [147, Jee], [147, Jnn], [150, Jee], [150, Jnn], [151, Jee], [153, Jee], [155, Jee], [155, Jnn], [156, Jee], [158, Jnn], [159, Jnn], [161, Jnn], [163, Jee], [163, Jnn], [164, Jee], [164, Jnn], [165, Jee], [166, Jee], [166, Jnn], [169, Jnn], [170, Jee], [173, Jee], [173, Jnn], [179, Jee], [179, Jnn], [180, Jee], [180, Jnn], [182, Jee], [183, Jee], [184, Jee], [184, Jnn], [185, Jee], [185, Jnn], [186, Jee], [186, Jnn], [190, Jee], [190, Jnn], [192, Jnn], [193, Jee], [200, Jee], [200, Jnn], [201, Jee], [201, Jnn], [203, Jee], [203, Jnn], [219, Jee], [222, Jee], [320, Jee], [320, Jnn], [321, Jee], [321, Jnn], [322, Jee], [322, Jnn], [323, Jee], [323, Jnn], [324, Jee], [324, Jnn], [325, Jee], [325, Jnn], [329, Jee], [329, Jnn], [333, Jee], [333, Jnn]]
for repo in ['hera_cal', 'hera_qm', 'hera_filters', 'hera_notebook_templates', 'pyuvdata']:
exec(f'from {repo} import __version__')
print(f'{repo}: {__version__}')
hera_cal: 3.2.3 hera_qm: 2.1.1 hera_filters: 0.1.4.dev2+ga4ff591 hera_notebook_templates: 0.1.dev531+gfe314a8 pyuvdata: 2.3.3.dev39+g16031096
print(f'Finished execution in {(time.time() - tstart) / 60:.2f} minutes.')
Finished execution in 41.68 minutes.